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Abstract 

Inflammatory bowel disease is a group of chronic and recurrent autoimmune diseases 

that engage the gastrointestinal tract, including ulcerative colitis and Crohn's disease. 

Advances in understanding disease pathology have led to the development of new 

therapeutic approaches. For instance, extracellular vesicles have attracted clinicians due 

to their crucial roles in keeping intestinal epithelial barrier integrity and interactions 

with microbiota. Extracellular vesicles are potentially useful in drug delivery on account 

of their natural origin, low toxicity, stability in the bloodstream, limited immunogenicity, 

ability to breach biological barriers, and capability to target specific cells. In another 

aspect, extracellular vesicles as a therapeutic tool can reduce inflammation in colitis by 

decreasing pro-inflammatory, increasing anti-inflammatory cytokine levels, and 

inhibiting the NF-κB signaling pathway. Moreover, the interaction between gut 

microbiota and the intestine can affect the development of inflammatory bowel disease. 

Extracellular vesicles derived from probiotics, commensal bacteria, and parasites 

potentially treat inflammatory bowel disease. Despite their benefits, several challenges 

hinder exosome-based therapies, including low production yields, high costs of large-

scale cell culture, limited cargo transport efficiency, and difficulties in quality control 

due to exosome heterogeneity. Further, evidence of the role of extracellular vesicles in 

the treatment of inflammatory bowel disease is confined to in vitro models and in vivo 

studies; thus, the research is at an early stage. The next significant step in extracellular 

vesicle research will be the translation of the approach into human clinical trials to 

confirm the findings and explore their therapeutic potential in inflammatory bowel 

disease. 

Keywords: Crohn’s disease, Exosome, Extracellular vesicle, Inflammatory bowel 

disease, Ulcerative colitis 
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Introduction 

Inflammatory bowel disease (IBD) refers to a 

set of chronic and recurrent autoimmune 

illnesses affecting the gastrointestinal system, 

including ulcerative colitis (UC) and Crohn's 

disease (CD) (1). IBD was once thought to be 

a Western disease, but it is now a worldwide 

disease, with an increasing prevalence in 

Westernized Asia, Africa, and South America 

(2). The increasing prevalence of IBD may be 

linked to industrialization and the adoption 

of Western lifestyles, as immigrants in 

developed nations have a higher risk of 

autoimmune illnesses than their homeland 

(3, 4).  

IBD is characterized by inflammation of the 

mucosal layer of the colon (in UC) or all 

layers of any part of the gastrointestinal (GI) 

tract (in CD) which is accompanied by 

diarrhea, abdominal pain, bloody stools, 

weight loss, and vomiting (5, 6).  The precise 

origins and pathogenesis of IBD remain 

unclear; nevertheless, various aspects have 

been substantiated, including genetic 

predisposition, immunological dysregulation, 

dysbiosis of the gut microbiota, and 

environmental influences (7-10). 

Furthermore, it is thought that loss of 

epithelial barrier function owing to unknown 

causes may expose gut microbiome 

components to the innate immune system. 

The exposure, together with immunological 

tolerance abnormalities and other 

predisposing variables, activates immune 

response pathways via immune mediator 

release, resulting in tissue inflammation and 

IBD clinical symptoms (6, 8, 11).  

For years, the treatment of IBD was limited to 

symptom management by pharmacotherapy 

with aminoacylates, corticosteroids, immune 

modulators, and surgery if necessary  (12-14).  

Nevertheless, the progress made within IBD 

pathology has given way to the emergence of 

new therapeutic options that could change 

the disease progression. For instance, Anti-

TNF-α drugs introduced in the last two 

decades offer significant benefits over 

traditional treatments (15, 16). Additionally, 

IBD medications play a crucial role in 

ensuring mucosal healing, avoiding hospital 

and surgical admissions, and improving the 

quality of life for IBD patients (17-19). 

However, findings suggest that 

approximately 30% of patients initially do not 

respond to anti-TNF- α agents and 23-46% 

lose their response in the first year of 

treatment (13, 20). In response to these 

constraints, the development of new biologics 

and small compounds has accelerated. 

Additional biologics and small molecules, 

such as anti-interleukin 12/23, anti-integrin 

medicines, and JAK inhibitors, are now in 

development to meet the needs of patients. 

Meanwhile, novel therapies such as 

apheresis, stem cell transplantation, and 

extracellular vesicles (EVs) have brought new 

hope in the treatment of IBD (1, 21). EVs are 

lipid bilayer-enclosed particles released by 

cells. The structures of EVs contain bioactive 

molecules such as proteins and nucleic acids, 

which play important roles in intercellular 

communication (22, 23).  

More recently, EVs have attracted much 

attention in the treatment of IBDs because of 

their important role in the maintenance of 

intestinal epithelial barrier integrity and their 

interactions with the microbiota (Fig 1) (24). 

They may act as advanced drug delivery 

systems that are capable of encapsulating 

medications  directly  into   inflamed    tissues  
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with minimum systemic exposure and side 

effects. Their lower immunogenicity, 

compared to cell-based treatments, allows for 

multiple applications in chronic conditions 

such as IBD. They can also function as 

biomarkers for diagnosing the disease. 

Furthermore, EV-based therapies can provide 

the possibility of personalized treatment and 

reduce the trial-and-error approach in the 

management of IBD (25, 26). Considering the 

importance of understanding the 

pathogenesis of IBD and its clinical 

implications, the mechanisms  of   action   of  

EVs as novel tools in the management of IBD 

will be discussed. In this regard, a targeted  

 

 

 

 

 

 

 

 

literature search was performed across 

reputable and core databases, utilizing a 

range of keywords pertinent to regenerative 

biomedicine and IBD. 

 

An overview of extracellular 

vehicles (EVs) 

 

EVs are defined as lipid bilayer-enclosed 

vesicles, which are secreted by a variety of 

cells ranging from human to plant cells. 

Traditionally, based on size and biogenesis, 

EVs can be classified into three major types: 

exosomes, microvesicles (MVs), and 

apoptotic bodies (ApoBDs). Exosomes are the 

Figure 1. EVs applications in IBD. AhR, aryl hydrocarbon receptor; ANXA1, annexin-1; BASP1, brain acid 

soluble protein 1, IL, interleukin; miRNA, micro-RNA; PSMA7, prostate-specific membrane antigen 7; NF-

κB, nuclear factor kappa-light-chain-enhancer of activated B cells; TGF-β, transforming growth factor beta; 

Th, T-helper; TKT, transketolase; TL1A, tumor necrosis factor-like cytokine 1A; TNF-α, tumor necrosis 

factor-alpha. 
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smallest EVs (from 30 to 150 nm). They 

originate from within the cell in 

multivesicular bodies (MVBs) and are 

released into the extracellular space by the 

fusion of MVBs with the cell membrane. 

Exosomes perform a variety of functions, 

including intercellular signaling, serving as 

biomarkers, and acting as vectors for cell 

therapy (27, 28). Microvesicles (MVs) are 

larger, ranging in size from 150 nm to 1 μm 

(27). MVs are important in various 

physiological and pathological processes, 

such as cancer progression, 

neuroinflammation, and tissue repair (29-

31). ApoBDs are the largest EVs, which are 

characterized by their irregular shape and 

formed during the process of apoptosis (27). 

ApoBDs are loaded by cellular debris and are 

essential for the clearance of apoptotic cells 

by phagocytes (32). At first, EV’s secretion 

was viewed as a mechanism for removing 

unwanted substances from cells, but now 

they are recognized to play a crucial role in a 

variety of intercellular communication (33). 

EVs can carry a wide range of biomolecules, 

including nucleic acids, proteins, lipids, and 

carbohydrates, shielding their cargo from 

degrading enzymes like nucleases and 

proteases during transport. The lipid bilayer 

maintains stability for the EVs and their 

associated cargoes under adverse 

physicochemical conditions such as long-

term storage, multiple freeze-thaw cycles, 

and extreme pH levels (34).  

EVs are mediators in a wide range of 

physiological and pathological processes, 

including intercellular component exchange. 

They also act as a communication bridge 

between the donor and recipient cells. Upon 

reaching EVs to recipient cells, through 

various mechanisms such as direct 

membrane fusion, receptor-ligand 

interaction, endocytosis, and phagocytosis 

which enables them to alter the cellular 

functions of recipient cells. Notably, EVs can 

cross biological barriers, such as the blood-

brain barrier (BBB), while maintaining low 

immunogenicity and toxicity during 

transportation (33). Various pathological 

conditions, such as oxidative stress, cellular 

transformation, apoptosis, and ethanol-

induced cell injury, can also provoke the 

release of EVs. Since EVs are present in some 

of the body fluids, they can be utilized as 

biomarkers for addressing dysfunctional cells 

in liquid biopsies (33, 34). Finally, their 

natural origin, low toxicity, stability in the 

bloodstream, limited immunogenicity, ability 

to overcome biological barriers, and capacity 

for cell targeting indicate EVs as a promising 

tool in drug delivery (27, 35). 

Potential role of EVS in IBD 

pathogenesis and clinical 

applications 

EVs have been used as a therapeutic tool in 

IBD treatment due to their unique 

characteristics and their potential advantages 

(36, 37). As in IBD, there is an interaction 

between genetic predisposition, 

environmental factors, and gut microbiota 

dysbiosis, IBD disrupts the mucosal 

homeostasis involved in epithelial barrier 

dysfunction, dysregulation in innate 

immunity, and disturbed T cell response (25, 

38). EVs maintain intestinal homeostasis and 

alleviate inflammation. They play a role in 

anti-inflammatory reactions, restoration of 

vascular and epithelial barrier function, 

immune cell recruitment, microbiota 

composition reconstitution, and cellular 
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metabolite export. Therefore, they are 

significant for IBD diagnosis and therapy. 

They are also safe and feasible alternatives to 

cell therapy. Additionally, they are permeable 

and stable and have a low immunogenicity 

and cytotoxicity rate. Moreover, they have a 

potential for clinical use as biomarkers, 

therapeutics, and prognosis estimation of 

IBD (38, 39).  

Immune modulation by EVs 

EVs are involved in regulating the immune 

responses by modulating cytokine 

production, suppressing pro-inflammatory 

cytokines such as TNF-α and IL-6, and 

promoting anti-inflammatory mediators such 

as IL-10 (25, 40, 41). However, EVs are found 

to trigger inflammation, depending on their 

cargo. For instance, exosomes from visceral 

adipose tissue induce M1 polarization and 

aggravate the symptoms of IBD, while MSC-

EVs promote the M2b phenotype and 

alleviate colitis by up-regulating regulatory T 

cells and down-regulating pro-inflammatory 

cytokines including IL-1β, IL-6, and IL-17A 

(42). Additionally, mesenchymal stem cells 

(MSCs)-EVs suppress Th1/Th17-driven 

inflammation by delivering anti-

inflammatory cytokines and miRNAs 

targeting pro-inflammatory pathways. For 

instance, NF-κB, a well-known transcription 

factor involved in inflammation, is inhibited 

by EV-derived miRNAs such as miR-146a and 

miR-155, resulting in decreased production of 

inflammatory cytokines like IL-1β and TNF-α 

(43). Similarly, JAK-STAT signaling, which is 

one of the major players in immune cell 

activation, is modulated by EV-associated 

proteins and miRNAs, contributing to 

reduced Th1/Th17-mediated inflammation, 

enhanced Treg responses, and inhibited DC 

maturation (44-46). Activated Treg cells 

secret exosomes that contain miR-195a-3p. 

These molecules impair pro-apoptotic 

caspase 12 function and finally, result in IBD 

alleviation (47). Moreover, intestinal 

epithelial cells (IECs) secrete exosomes with 

increased levels of TGF-β that contribute to 

immune balance and decrease IBD severity 

(24).  

In addition to human-derived EVs, particles 

from other sources like plants and bacteria 

have been used in IBD treatment. In this 

regard, ginger-derived EVs carry miRNAs 

that target gut bacteria such as Lactobacillus 

rhamnosus which can regulate genes (e.g., 

monooxygenase ycnE) and increase levels of 

indole-3-carboxaldehyde (AhR ligand). 

Activation of the AhR pathway results in 

increased production of IL-22, which 

promotes mucosal healing, modulates 

inflammatory responses, and reduces IBD 

severity. Grapefruit-derived EVs target 

intestinal macrophages, increase heme 

oxygenase-1, and reduce pro-inflammatory 

cytokine (36, 48, 49). On the other hand, 

lipopolysaccharide (LPS)-positive EVs which 

are derived from pathogenic bacteria such as 

E.coli can trigger inflammation by affecting 

Toll-like receptors (TLRs). Studies showed 

that the aforementioned bacteria and their 

EVs are increased in patients with IBD and 

can be used as biomarkers for disease 

diagnosis or a target for therapeutic agents 

(50). However, investigations continue to 

better understand the diverse capabilities of 

EVs in modulating immunity and disease 

pathogenesis, providing valuable tools for 

various therapeutic and diagnostic purposes. 

EVs and epithelial repair 
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Beyond immune modulation, EVs promote 

epithelial repair by delivering proteins and 

RNAs that enhance tight junction integrity. 

They also reduce barrier disruption caused by 

TNF-α and other inflammatory mediators. 

For instance, EVs derived from broccoli 

activate AMP-activated protein kinase that 

promotes intestinal healing. Ginger-derived 

EVs protect intestinal barriers and restore gut 

microbiota which may support IBD 

management. Moreover, human-derived EVs 

contain diverse cargo that actively 

participates in epithelial healing. For 

instance, miR-146b-containing EVs derived 

from dendritic cells (DC) promote the NF-κB 

signaling pathway and consequently enhance 

the barrier integrity and alleviate the 

inflammation in dextran sulfate sodium 

(DSS)-induced colitis. Additionally, long non-

coding RNA NEAT1, delivered by EVs, 

promotes intestinal epithelial barrier repair 

and reduces inflammation by reducing TNF-α 

and increasing the production of CD206, IL-

10, and arginase-1. On the other hand, EVs 

containing miR-223 disrupt the barrier by 

inhibiting claudin-8 expression, thus 

enhancing epithelial proteins and lipids 

which are involved in repairing the intestinal 

barrier are also found in EVs. For instance, 

EGF (Epidermal Growth Factor) which may 

be presented in EVs promotes epithelial 

regeneration by enhancing cell survival, 

proliferation, and differentiation. 

Additionally, lipids enhance cellular 

membrane repair by providing structural 

components necessary for cell membrane 

integrity (51). Furthermore, EVs derived from 

MSCs have been shown to contain bioactive 

molecules like Hepatocyte Growth Factor 

(HGF) and WNT proteins, both of which 

support epithelial proliferation and 

differentiation (52, 53). This multi-faceted 

cargo delivery further solidifies EVs as a 

promising regenerative therapy for IBD.  

Besides, in the pathophysiological process of 

IBD, different cells such as neutrophils and 

IEC release EVs that contain annexin 

A1(ANXA1). ANXA1 binds to formyl peptide 

receptors (FPRs) on responsive cells, such as 

phagocytes and epithelial cells, to decrease 

inflammation and promote wound healing. 

FRPs comprise three subtypes FPR1, 

FPR2/ALX, and FPR3 with FRP1 being in 

charge of wound healing. Notably, the Ac2-26 

peptide was identified as a functional 

mimetic of ANXA1. Delivering Ac2-26 

peptide through EVs to the inflamed area of 

IBD can promote wound healing (54). 

Furthermore, in IBD, the body starts to 

release EVs with transforming growth factor 

beta (TGF-β) as a compensatory reaction 

intended to inhibit CD4+ and modulate 

inflammation. It is worth noting that in 

several cases the level of TGF-β was stabile 

which may be due to the threshold of tissue 

damage necessary to activate this response 

(55). Collectively, these findings highlight the 

role of EVs in promoting epithelial repair in 

the context of IBD (55). 

Impact of EVs on gut microbiota 

Gut microbiota can be altered by several 

factors such as genetic, environmental, 

dietary, microbial, and chemical, resulting in 

dysbiosis as is seen in IBD (56). EVs can 

influence gut microbiota composition, reduce 

dysbiosis, and improve microbial diversity, a 

critical factor in IBD pathogenesis. Studies 

indicated that EVs from different sources 

affect the shape of the gut microbiome. For 

instance, milk-derived EVs can decrease 
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deleterious bacteria such as Enterococcus, 

Turicibacter,Helicobacter,Desulfovibrionace

ae, unclassified Desulfovibrionaceae, and 

Mogibacteriaceae by inhibiting 

proinflammatory cytokines secretion while 

they increase beneficial bacteria (e.g., 

Akkermansia, S24_7, Paraprevotella, and 

Verrucomicrobiaceae) (56). Additionally, 

milk-derived EVs can restore the decline in 

the diversity of gut microbiota in DSS-

induced colitis (56). Furthermore, breast 

milk-derived EVs contain proteins such as 

AnnexinA5, Flotilin-1, and CD9 that are 

involved in gut microbiota modulation. 

Besides milk in sources of EVs, bacterial EVs 

have also been shown to play a key role in 

modulating gut microbiota populations (57). 

In this regard, Hao et al. suggested that 

Lactobacillus plantarum Q7-derived 

extracellular vesicles alleviate DSS-induced 

colitis in mice by increasing anti-

inflammatory bacteria (Bifidobacteria and 

Muribaculaceae) (58). Due to limited studies 

on the impact of EVs on gut microbiota, the 

mechanisms behind the scene are unclear in 

comparison with intestinal barrier and 

immunomodulation. Further research is 

needed to understand the role of EVs in gut 

microbiota modulation and its correlation 

with IBD pathogenesis to develop novel 

therapeutics.  

EVs as biomarkers for IBD 

diagnosis 

EVs may provide an early sign of disease even 

before clinical symptoms are apparent. For 

instance, the levels of certain miRNAs or 

proteins in EVs may be elevated by active 

disease or disease progression, thus enabling 

earlier detection and more precise 

monitoring. The concentration of specific EV 

markers in the blood or other fluids has also 

correlated with the severity of disease, 

treatment response, or recurrence. For 

instance, the levels of miR-144-3p in EVs 

correlated with the endoscopic score of CD 

and therefore may provide a more accurate 

marker of disease progression than more 

traditional markers, such as C-reactive 

protein. Moreover, Annexin-1 is a protein 

that is highly present in the serum EVs of 

active IBD patients. Its concentration 

parallels the degree of inflammation and, 

hence, may act as a diagnostic marker. 

MicroRNA (miR-144-3p) is highly expressed 

in the serum of patients with Crohn's Disease. 

Therefore, it is positively correlated with the 

endoscopic score of disease activity and has 

the potential to help follow-up recurrence 

after surgery. Moreover, some proteins were 

found to be exclusively present in the EVs of 

IBD patients, including PSMA7, BASP1, TKT, 

and TLN1, which may indicate their use as 

biomarkers for diagnosis and disease 

monitoring (41, 59). Overall, such therapeutic 

effects, coupled with their capabilities for 

selective targeting of inflamed tissues, 

minimal immunogenicity, and adaptability 

for personalized medicine, render EVs a 

powerful tool in IBD treatment. Indeed, the 

challenges are how to optimize isolation, 

standardization, and large-scale production 

processes to enable translation into the 

clinics. Studies should also focus more on 

high-purity, cost-effective EV isolation and 

processing techniques (25, 60, 61). 

Clinical implementation 

The clinical translation of EV-based therapies 

in IBD is advancing rapidly, with both 
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preclinical and clinical studies demonstrating 

promising results. EVs derived from diverse 

sources, including bacterial outer membrane 

vesicles (OMVs), plant-derived nanovesicles, 

and stem cells, have shown potential in 

modulating immune responses, restoring 

intestinal barrier integrity, and influencing 

gut microbiota composition (62-64). 

However, translating these findings into 

clinical practice involves overcoming 

challenges related to large-scale production, 

standardization, and regulatory approval (26, 

65). The following table summarizes key 

studies exploring EV-based approaches in 

IBD management (Table. 1). 

EV therapies vs. existing 

treatments  

The IBD treatment has evolved from 

conventional small-molecule drugs (e.g., 

aminosalicylates, corticosteroids) to biologics 

targeting specific inflammatory pathways 

(e.g., anti-TNFα) and oral small-molecule 

inhibitors (e.g., JAK/STAT blockers)(73, 74). 

These approaches have improved clinical 

outcomes of patients, but several limitations, 

such as systemic side effects, infections, and 

loss of response, disrupt their efficacy (1, 75). 

EV-based therapies emerged as a novel 

approach in IBD management. EVs by 

modulating immune responses, repairing 

mucosal barriers, and delivering bioactive 

high specific cargo (e.g., miRNAs, proteins), 

capable of overcoming challenges of current 

treatments (42, 49). The supplementary table 

contrasts the mechanisms, advantages, and 

limitations of EV therapies against 

established IBD therapies (Supplementary 1). 

Challenges and limitations 

Growing investigations on EV research 

havearticulated interest in their application 

to clinical practice. Despite their great 

potential, the application of EVs is confronted 

with several challenges (100). For instance, 

EVs are classified into different subtypes, 

which vary in size, composition, and function. 

Besides the diversity, complications in 

separating EVs from non-EV components 

have put special challenges on their isolation 

and concentration process. Advanced 

isolation methods must prioritize both purity 

and scalability to ensure clinical relevance. 

Therefore, selecting newer techniques such as 

tangential flow filtration, field-flow 

fractionation, asymmetric flow field-flow 

fractionation, and novel immunization 

technologies intend to better isolation and 

concentration of EVs (101, 102).  Another 

consideration is the cellular origin of EVs' 

molecular composition and their therapeutic 

effectiveness and dose-response consistency. 

Standardizing cell culture conditions and 

donor sourcing can mitigate variability in EV 

production. The heterogeneity  of  source  

cells  can  affect the reproducibility and 

efficiency of EV-based therapies and thus 

presents a challenge toward standardization 

(103, 104). Moreover, storage conditions of 

EVs and their source matrices, including 

biofluids, tissues, or conditioned media, are 

essential to maintain the stability, particle 

number, aggregation, and functional 

properties of EVs. Recent studies highlight 

that improper storage can break EV 

membrane integrity and reduce bioactivity. 

Storage containers, temperature and 

duration, EV processing and storage, buffers 

and cryoprotectants, and alternate storage 

techniques are some of the important factors 

in the storage process (101, 105). 



Regenerative Biomedicine  
Volume 1, Issue no. 3  
Production and Hosting by Shahid Sadoughi University of Medical Sciences 

 

163 
      

Arjmand et al. 
 

 

 

 

 

 

 

 

Study 

 

EV source 

 

Developmental 

Stage 

 

Primary Focus 

 

References 

 

Dorner et al.,2024 

 

Bacterial OMVs 

 

Preclinical & Clinical 

 

Role of gut pathobiont-derived OMVs in 

promoting liver inflammation and fibrosis in 

PSC-IBD 

 

66 

 

Gao et al., 2022 

 

Turmeric 

 

Preclinical 

 

Development of TNVs to alleviate ulcerative 

colitis through intestinal barrier restoration, 

microbiota regulation, and macrophage 

reshaping 

 

67 

 

Alberti et al., 2021 

 

 

Mesenchymal stem cells 

 

Preclinical 

 

Pathogenesis and therapeutic potential of EVs 

in IBD and perianal fistulizing disease 

 

68 

 

Tong et al., 2020 

 

mEVs 

 

Preclinical 

 

Investigating the effects of mEVs on gut 

microbiota composition, SCFAs, and intestinal 

immunity 

 

69 

 

Deng et al., 2017 

 

BDNs 

 

Preclinical 

 

Investigating the effects of edible 

nanoparticles (BDNs) on gut immune 

homeostasis and DC activation for tolerogenic 

responses 

 

70 

 

Jiang et al., 2016 

 

Intestinal epithelial cells 

 

Preclinical 

 

Impact of EpCAM on EV localization and 

protective effects against IBD 

 

71 

 

Zhang et al., 2016 

 

Edible plant ginger 

(GDNPs 1, GDNPs 2, 

GDNPs 3) 

 

Preclinical 

 

Development of nanoparticle drug carriers for 

targeted delivery in IBD treatment, targeting 

colon inflammation, and improving treatment 

outcomes by utilizing ginger-derived 

nanoparticles 

 

 

72 

Table 1. Preclinical and Clinical Studies on Extracellular Vesicles in Inflammatory Bowel Disease (Abbreviations: EVs: 

Extracellular Vesicles, OMVs: Outer Membrane Vesicles, PSC-IBD: Primary Sclerosing Cholangitis-Inflammatory Bowel Disease, 

TNVs: Turmeric-Derived Nanovesicles, MSC: Mesenchymal Stem Cells, mEVs: Milk-Derived Extracellular Vesicles, SCFAs: 

Short-Chain Fatty Acids, BDNs: Broccoli-Derived Nanoparticles, DC: Dendritic Cells, EpCAM: Epithelial Cell Adhesion 

Molecule, GDNPs: Ginger-Derived Nanoparticles, IBD: Inflammatory Bowel Disease) 



 

164 
 

Extracellular vesicles in IBD 
 

 

 

dDddd 

 

Furthermore, the therapeutic application of 

EVs is not without limitations. For instance, 

fast immune system clearance, nontargeted 

specificity, and low efficiency of cytoplasmic 

delivery can limit EV’s therapeutic efficacy 

(106). However, engineering EVs with 

targeting ligands or stealth coatings may 

enhance their pharmacokinetics (107). 

Moreover, regulatory challenges are also a 

significant obstacle, since the evolving 

regulatory environment, huge amounts of 

data requirements, and lack of EV-specific 

regulations create complexities in market 

approval and clinical utilization (108, 

109). Therefore, the challenges and 

limitations of EVs necessitate developing 

clear guidelines to ensure safety and efficacy 

in clinical applications (Table 2) (110). 

Discussion and conclusion 

IBD is a multifactorial, chronic condition, 

and its potential effects on the quality of life 

of affected patients (112, 113).  Although 

pharmacotherapies and biologics have been 

developed limitations such as non-

responsiveness, loss of efficacy, and systemic 

side effects have led to an interest in novel 

treatment approaches (114). Recently, 

emerging evidence has underlined the value 

of EVs as novel approaches to overcome such 

obstacles in IBD interventions (115). EVs 

such as exosomes, microvesicles, and 

apoptotic bodies, can be involved in cell-to-

cell signaling, immunomodulation, epithelial 

repair, and regulation of gut microbiota (116-

118). They are fit for therapeutic delivery 

because of the potential for loading several 

bioactive molecules like proteins, lipids, and 

nucleic acids which maintain their stability 

even in adverse conditions (119). Besides, EVs 

derived from cow's milk and plant-based 

sources had been demonstrated to resist 

enzymatic digestion along the 

gastrointestinal tract. Hence, they can be 

known as one of the most appropriate 

vesicles for oral drug administration. As an 

example, in nude mice, Cow's milk-derived 

EVs loaded with paclitaxel (PAC) 

demonstrated improved pharmacokinetic 

profiles. In addition, orally administered 

PAC-loaded EVs reduced systemic and 

immunological toxicity compared to 

intravenous delivery at equivalent doses. 

Moreover, Casein-coated and PEGylated EVs 

(derived from milk) have been developed to 

resist degradation in the stomach and 

enhance permeability through intestinal 

mucin layers (36). Furthermore, low 

immunogenicity and the capability to cross 

biological barriers such as the intestinal 

mucosa and blood-brain barrier can also 

enhance their therapeutic potential (120). 

Particularly in IBD, EVs are drawing interest 

because of their role in modulating immune 

response, restoring intestinal barrier 

function, and gut microbiome reconstitution  

(64). For instance, MSC, ginger, and milk EVs 

demonstrated anti-inflammatory properties 

that enhanced epithelial integrity while 

reducing oxidative stress. These observations 

are encouraging because disruption of 

immune homeostasis and epithelial barriers 

has been implicated in the pathogenesis of 

IBD (121). Furthermore, EVs are a natural 

and biocompatible vehicle for drug delivery 

and can load therapeutic agents to be 

selectively delivered to inflamed tissues, 

hence limiting systemic exposure and side 

effects (122).  
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EVs can also act as biomarkers in IBD. Some 

of the proteins and microRNAs expressed in 

EVs, such as miR-144-3p and annexin A1, are 

closely related to disease activity and its 

further process. EVs can also be helpful in 

early diagnosis, assessment of disease 

activity, and even in predicting the treatment 

response. Therefore, EVs can remarkably 

limit the "trial and error" methods so 

common in IBD management, with 

personalized and much more effective 

therapy (41, 59). Despite the potential of EVs 

in the treatment of diseases, large-scale 

manufacturing of EVs and following 

regulations towards clinical application have  

acted as a commercialization bottleneck (123,  

 

124). (123, 124). This manufacturing yields 

originates from the limited secretory capacity 

of cells, the technical and financial challenges 

of scaling up cultures, and lengthy production 

timelines, which hinders the industrial ability 

of EVs (42).  To address these challenges, 

more collaborative research, technological 

innovation, and policy development are 

needed. Further studies are required to 

optimize the isolation techniques of EVs, 

functional assays, and engineering strategies 

to enhance therapeutic efficacy and 

specificity. Therefore, though challenging, the 

complete realization of the potential of EV-

based therapies will point toward a way to 

Aspect Challenges Reference 

Isolation and 

Concentration 

Unachievable absolute isolation and concentration due to EV 

heterogeneity (different subtypes vary in size, composition, and function) 

and separation from non-EV components. 

(101) 

Storage and Retrieval 

Conditions 

EV impact on storage and retrieval conditions stability, particle number, 

aggregation, and function. 
(101) 

Biological Variability 
Originating from various cell sources and its affecting on molecular 

composition, therapeutic potential, and dosing consistency. 
(103) 

Safety Concerns 
Potential for immunogenicity or adverse reactions 

Need for thorough safety assessments before clinical use 
(111) 

Functional Assays 
Lack of reliable assays to assess therapeutic potential 

Challenges in confirming cargo functionality after engineering 
(111) 

Targeting and 

Biodistribution 

 

Difficulty in achieving specific targeting to desired tissues or cells 

Variability in biodistribution patterns in vivo 

Lack of efficacy by rapid clearance of the immune system 

(106, 111) 

 

Engineering Limitations 
Modification may alter natural targeting capabilities 

Risk of increasing size, which can affect circulation and delivery 
(111) 

Commercialization 
Difficulty in scaling up production 

Regulatory hurdles for clinical application 
(111) 

Table 2. Challenges and Limitations in the Therapeutic Application of Extracellular Vesicles (EVs) 
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safer, more effective, personalized treatment 

options for IBD (125). 
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