
 

 235      
  

 Review Article 

 

Regenerative Biomedicine 
Journal homepage: 

jrb.ssu.ac.ir Production and Hosting: Shahid Sadoughi University of Medical Sciences 
   

 

 

Harnessing BMPs for Bone Regeneration: Mechanisms, 

Biomaterials, and Clinical Applications 

Fatemeh Kuchakzade1,2* 

1. Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. 

2. Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. 
 

 

*Corresponding Author:  

Kuchakzade, Fatemeh 

Email: 

fatemehkuchakzade@gmail.com  

Received: 
2025-05-13 

Revised: 

2025-06-18 

Accepted: 
2025-06 -21  

 

 

 

 

Editor-in-Chief: 
 
Behrouz Aflatoonian Ph.D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
How to cite this article:  

Kuchakzade, F. Harnessing BMPs for Bone Regeneration: Mechanisms, Biomaterials, and Clinical 

Applications. Regenerative Biomedicine, 2025; 1(3): 235-249. 

 

Volume:1 
Issue no.3 

Copyright © 2025 The Authors.  

This work is licensed under a Creative 

Commons Attribution 4.0 International 

License, which permits unrestricted 

use, distribution, and reproduction in 

any medium, provided the original 

work is properly cited. 

Abstract 

Bone tissue engineering is a rapidly advancing interdisciplinary domain 

dedicated to the regeneration of skeletal defects through the combined use of 

stem cells, bioactive growth factors, and engineered scaffolds. Among the 

growth factors employed, BMPs, members of the TGF-β superfamily, have 

emerged as critical mediators of osteogenesis. These proteins drive the 

differentiation of mesenchymal stem cells and activate key signaling cascades 

such as Smad, MAPK, and Wnt, which collectively facilitate bone formation. 

However, translating BMP-based therapies into clinical practice involves 

overcoming major challenges, including precise dose regulation, 

spatiotemporal delivery, high production costs, and the risk of adverse effects 

like ectopic ossification. Recent advances in scaffold engineering, particularly 

the development of smart biomaterials, offer promising strategies for achieving 

controlled and targeted BMP delivery. This review comprehensively discusses 

the molecular mechanisms and biological functions of BMPs, evaluates their 

integration with scaffold technologies, and examines current clinical 

applications, limitations, and future directions in the context of bone tissue 

engineering. 
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Introduction 

Tissue Engineering is an interdisciplinary 

field that combines biology, materials 

science, and engineering to design and 

construct scaffolds aimed at replacing, 

repairing, or enhancing the function of 

damaged or lost tissues in the body. This field 

has seen significant growth in recent decades, 

offering various solutions for the treatment of 

bone, cardiac, liver, neural, and other injuries 

(1). Among these, bone regeneration stands 

as one of the most challenging areas of tissue 

engineering due to the fact that bone is a 

dynamic, living tissue that, in addition to its 

structural role, also participates in calcium 

homeostasis, hematopoiesis, and metabolism 

(2). 

In the design of biological systems for tissue 

regeneration, the presence of growth factors 

is essential, in addition to biomaterial 

scaffolds and stem cells. These factors act as 

biochemical messengers, guiding cellular 

differentiation, proliferation, and migration 

pathways (3). Of the hundreds of identified 

growth factors, Bone Morphogenetic Proteins 

(BMPs) are one of the most significant and 

effective groups for inducing osteogenesis (4). 

BMPs are a group of secreted proteins that 

were first discovered by Urist in 1965, who 

demonstrated that demineralized bone 

powder could induce new bone formation in 

non-bony areas (5). It was later determined 

that this property was due to the presence of 

BMPs. BMPs are a part of the larger 

Transforming Growth Factor-β (TGF-β) 

family and play a critical role in inducing 

osteogenesis, differentiating mesenchymal 

stem cells (MSCs), and tissue regeneration (6, 

7). BMPs have a unique biological ability to 

induce osteogenesis (8). 

BMP-2 and BMP-7 are two well-known 

members that have wide applications in bone 

regeneration and have been approved for use 

in certain FDA-approved pharmaceutical 

products (9). These factors can guide stem 

cells at the injury site towards osteogenesis 

without the need for external cell 

supplementation (10). Their functionality is 

also dependent on the presence of a suitable 

biomaterial scaffold and a proper 

microenvironment. Despite the widespread 

use of BMPs in tissue engineering, challenges 

such as correct dosing, controlled release, 

high cost, and potential side effects (such as 

ectopic bone formation) remain (10, 11). 

Furthermore, advancements such as 

nanotechnology, gene therapy, and smart 

scaffolds could help address these issues (12). 

Therefore, a comprehensive and systematic 

review of the various aspects of BMPs—

ranging from biological to technological—can 

significantly aid in the design of more 

effective bone regeneration strategies. This 

review article aims to investigate the 

following aspects: 

1) Molecular Biology and Signaling Pathways 

of BMPs   

2) Role of BMPs in Cellular Differentiation 

and Induction of Bone Formation 

3) Applications in Tissue Engineering 

Scaffolds  

4) Clinical and Preclinical Studies   

5) Challenges and Limitations   

6)Emerging Technologies for Optimizing 

BMP Performance 

 

BMPs structure, molecular properties 

and signaling pathways 

BMPs are a subset of the TGF-β family, 

characterized by a biologically active domain 

with a conserved structure. BMPs are initially 
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synthesized as inactive precursors, which 

include a signal domain, a propeptide, and an 

active region. After cleavage by proteases, the 

active fragment is released as a dimer (homo 

or hetero) in the extracellular space. This 

dimeric structure is essential for biological 

activity and is stabilized by disulfide bonds 

between the monomers (13, 14). The BMP 

family consists of over 20 different isoforms, 

which are structurally precursors that 

transform into active dimeric proteins upon 

translation (15). BMP-2, BMP-4, and BMP-7 

are the most significant members of this 

family, known for their substantial effects on 

osteogenesis and differentiation of MSCs 

(16).  

BMPs exert their function by binding to two 

types of transmembrane serine/threonine 

kinase receptors: Type I receptors such as 

Activin receptor-like kinase 2 (ALK2), Activin 

receptor-like kinase 3 (ALK3), Activin 

receptor-like kinase 6 (ALK6), and Type II 

receptors such as BMP receptor Type II 

(BMPR-II), Activin Receptor Type II )ActR-

II(, and Activin Receptor Type IIB )ActR-IIB(. 

BMP initially binds to Type II receptors, 

leading to the activation of the Type I 

receptor complex, which results in the 

phosphorylation of downstream signaling 

proteins  (17). Proteins like Endoglin and 

Betaglycan act as co-receptors for BMPs and 

play a crucial role in modulating the intensity 

and type of cellular response. These co-

receptors can either enhance or inhibit BMP 

activity under certain conditions (18). 

Smad) signaling pathway is one of the 

primary pathways involved in BMP action, 

functioning through the phosphorylation of 

Smad1, Smad5, and Smad8. This pathway 

plays a key role in the differentiation of stem 

cells into osteoblasts, regulation of osteogenic 

gene expression, and tissue regeneration. 

Upon BMP binding to the Type I and II 

receptor complex, the Type I receptor is 

activated, leading to the direct 

phosphorylation of Smad1, Smad5, and 

Smad8 (12). These phosphorylated Smads 

then bind to Smad4 (a Co-Smad), forming a 

complex that translocates to the cell nucleus, 

where it activates or suppresses the 

expression of target genes. Key genes 

activated by this pathway include Runt-

related transcription factor 2 (RUNX2) (a key 

factor in osteogenesis), Osterix (SP7), and 

Collagen type I alpha 1 chain (Col1a1), all of 

which are involved in osteoblast 

differentiation and extracellular bone matrix 

formation (19, 20). 

In tissue engineering, BMP-induced 

activation of the Smad pathway in MSCs 

leads to differentiation into osteoblasts. 

Studies have shown that loading BMPs onto 

biological scaffolds activates this pathway 

and enhances osteogenesis in vivo (21). In 

addition to the classic Smad pathway, BMPs 

can also activate non-Smad signaling 

pathways, known as "non-canonical" 

pathways. These include Mitogen-Activated 

Protein Kinase (MAPK), Phosphoinositide 3-

Kinase/Protein Kinase B )PI3K/Akt(, and 

interactions with the Wingless/β-catenin 

(Wnt/β-catenin( pathway, all of which play 

significant roles in regulating cell survival, 

proliferation, migration, and differentiation 

(22). BMPs can activate the MAPK pathway 

via Type I receptors. This pathway includes 

three main branches: 

p38 MAPK (increases osteoblast 

differentiation and expression of genes like 

Runx2) 
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Extracellular signal-Regulated Kinases 

(ERK1/2) (primarily involved in cell 

proliferation, and in some cases negatively 

interacts with Smads) c-Jun N-terminal 

kinase (JNK) (activated under oxidative 

stress, with a dual role in cell survival) (23) 

(Fig. 1). 

The PI3K/Akt pathway is especially 

important for the survival and resistance of 

stem cells. BMPs activate this pathway via 

receptor binding and interaction with other 

factors like Insulin-like growth factor (IGF), 

which leads to the phosphorylation of Akt. 

Akt, in turn, enhances cell survival and 

osteogenic differentiation by inhibiting 

proteins like Bad and GSK3β (24). The Wnt 

pathway, crucial for cell growth and 

differentiation, interacts with BMP signaling 

in a complex manner. In many stem cells, 

simultaneous activation of both the Wnt and 

BMP pathways enhances osteogenesis. Wnt 

synergizes with BMP by inhibiting Smad6, 

which is a negative regulator of BMP Smads 

(25). In the design of smart scaffolds for bone 

regeneration, the simultaneous use of factors 

that activate the MAPK, PI3K, and Wnt 

pathways alongside BMP can significantly 

enhance osteoinduction. Additionally, the 

spatial and temporal control of these 

pathways is a key to the success of 

therapeutic outcomes in clinical settings (11, 

26). BMP signaling pathways are tightly 

regulated by a set of negative regulators that 

prevent overstimulation or inappropriate 

cellular responses by either inhibiting BMP 

receptor binding or blocking downstream 

pathways. These regulators can be divided 

into two main categories: extracellular 

inhibitors and intracellular inhibitors (27). 

 

Extracellular Inhibitors 

Noggin is one of the most well-known BMP 

inhibitors, which prevents BMP-2, BMP-4, 

and BMP-7 from interacting with cell surface 

receptors by binding directly to them. Noggin 

plays an inhibitory role in embryonic 

development, neuronal differentiation, and 

the regulation of osteogenesis (28). Chordin 

also inhibits BMP signaling by binding to 

BMPs and sequestering them away from 

receptors, through interactions with proteins 

such as Twisted gastrulation. Chordin is 

primarily involved in embryonic development 

and body patterning, but it has also gained 

importance in tissue engineering (29). 

Gremlin is an inhibitor involved in both 

kidney development and the regulation of 

bone remodeling in adults. This protein is 

particularly upregulated in pathological 

conditions like fibrosis and tumorigenesis, 

exacerbating BMP pathway inhibition (30). 

 
Intracellular Inhibitors 

Smad6 and Smad7 (I-Smads), known as 

inhibitory Smads, prevent the 

phosphorylation and signal transduction of 

activated BMP receptors or Smads by binding 

to them. Notably, Smad6 specifically targets 

the BMP pathway, inhibiting it in a targeted 

manner. Some non-canonical pathways, such 

as ERK, can negatively affect Smads and 

prevent their translocation to the nucleus, 

representing a cross-talk mechanism between 

pathways (27, 31) . 

In the design of biological scaffolds, the use of 

BMP inhibitors in specific regions can 

prevent unwanted ossification in soft tissues. 

Additionally, controlling the expression of 

Noggin or Smad6 in biological environments 

helps achieve more precise and controlled 

bone regeneration (6). 
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Figure 1. The image depicts a diagram of the BMP (Bone Morphogenetic Protein) pathway and its 

mechanism of action within the cell. BMP is a morphogenetic growth factor that plays a crucial role in 

development, cellular differentiation, and cell-cell communication. BMP: Bone Morphogenetic 

Protein, ALK2: Activin-like Kinase 2, ALK3: Activin-like Kinase 3, ActR-IIB: Activin Receptor Type 

IIB, BMPR-II: Bone Morphogenetic Protein Receptor Type II, ActR-II: Activin Receptor Type II, 

Smad: Small Mothers Against Decapentaplegic, MAPK: Mitogen-Activated Protein Kinase, ERK1/2: 

Extracellular Signal-Regulated Kinase ½, JNK: c-Jun N-terminal Kinase, Col1a1: Collagen Type I 

Alpha 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application of BMPs in the Design 

of Bioactive Scaffolds for Bone 

Tissue Engineering 

Bone tissue engineering, as a modern 

approach to repairing bone defects, is based 

on three essential pillars: stem cells, growth 

factors,  and   biomimetic   scaffolds.   Among 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these, scaffolds play a fundamental role as the 

physical and biochemical substrate for 

supporting cellular proliferation, 

differentiation, and organization (32). On the 

other hand, growth factors, particularly 

BMPs, have garnered significant attention in 
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scaffold design due to their unique ability to 

induce osteogenesis. The aim of advanced 

scaffold design is to create structures that not 

only possess suitable physical and mechanical 

properties but also have the capability for 

controlled and targeted BMP release (33). 

Effective scaffolds must be able to deliver and 

release BMPs efficiently and stably at the site 

of the bone defect. In Table 1, BMP-carrying 

biological scaffolds are categorized based on 

the type of constituent material (10). 

Key features of such scaffolds include: 

1) High biocompatibility: The scaffold should 

not induce cytotoxicity or immune responses. 

2) Controlled biodegradability: It should 

degrade in sync with the formation of new 

bone, providing space for the regenerating 

tissue (34). 

3) Interconnected porosity: The scaffold must 

have a porous structure with pore sizes 

between 100–300 µm to facilitate cell 

migration, nutrient exchange, and vascular 

infiltration (35). 

4) Mechanical compatibility: The scaffold 

should have sufficient strength to withstand 

mechanical loads and mimic the extracellular 

matrix (ECM) of bone. 

5) Effective BMP loading and release: It must 

be capable of loading BMPs without 

deactivation and release them steadily at 

physiological doses (36). 

6) Biological stability: The scaffold should 

protect BMPs against enzymatic and 

physiological degradation and release them at 

the appropriate time (6). 

To design BMP delivery strategies in 

scaffolds, various methods should be 

considered, including simple physical release, 

controlled release using biodegradable 

polymers, BMP-loaded nanoparticles and 

microspheres, covalent BMP bonding, and 

multifunctional scaffolds (10, 37). 

Simple physical release: In this method, 

BMPs are adsorbed or loaded onto the 

surface or bulk of the scaffold. Although it is 

the simplest approach, it often results in a 

burst release, leading to a rapid decrease in 

BMP concentration over time. This method is 

suitable for short-term applications or when a 

low dose suffices but is often inadequate for 

many clinical scenarios (38).Controlled 

release via biodegradable polymers: Polymers 

such as Poly (lactic-co-glycolic acid) (PLGA), 

chitosan, and gelatin can enable sustained 

BMP release by controlling degradation rates. 

When combined with ceramics like Beta-

Tricalcium Phosphate (β-TCP), these 

scaffolds provide a bone-like environment 

and protect BMPs from premature 

degradation. This method has shown 

excellent results in animal models by 

stimulating endogenous bone formation (39). 

Use of BMP-loaded nanoparticles and 

microspheres: Polymeric or inorganic 

nanoparticles like PLGA and calcium 

phosphate (CaP) can encapsulate BMPs and 

release them at controlled rates depending on 

physiological conditions. This approach offers 

enhanced stability, protection against 

enzymatic degradation, and more precise 

dosage control (40). 

Covalent bonding of BMP to scaffold matrix: 

Here, BMPs are covalently bound to the 

scaffold and are only released in the presence 

of specific enzymes in the target tissue. This 

strategy enhances targeting, reduces systemic 

effects, and improves therapeutic efficacy. It 

is feasible through advanced chemical 

reactions and responsive systems (41). 

Multifunctional scaffolds: These scaffolds  
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Table 1. Examples of classification of biomimetic scaffolds containing bone morphogenetic protein (BMP) 

(Abbreviation: BMPs: Bone Morphogenetic Proteins, PLGA: Poly (lactic-co-glycolic acid), PCL: 

Polycaprolactone, HA: Hydroxyapatite, β-TCP: Beta-Tricalcium Phosphate, GelMA: Gelatin Methacrylate) 

 

 

 

 

 

offer additional functionalities alongside 

BMP delivery, such as electrical conductivity, 

antibacterial properties, or co-delivery of 

other factors like Vascular Endothelial 

Growth Factor )VEGF( (49). Examples 

include: 

1)PLGA(BMP-2 ) / CS (Pac-525) @ MC/PCL 

scaffold: Provides osteogenic and 

antibacterial effects (50). 

2) 3D-printed PCL/bioglass (BGS-7) 

composite scaffolds: Offers customizable 

design and high bone regeneration potential 

(51). 

3) Chitosan-loaded mesoporous silica 

nanoparticle scaffolds containing BMP-2 and 

dexamethasone: Significant Stimulation of 

Osteoblast Differentiation and Bone 

Regeneration by Simultaneous Delivery of 

BMP-2 and Dex (52). 

 

Bone morphogenetic proteins, especially 

BMP-2 and BMP-7, are among the few 

growth factors that have received FDA 

approval for clinical use in bone regeneration 

(53). One of the most well-known commercial 

products in this field is Infuse® Bone Graft, 

developed by Medtronic, which combines 

BMP-2 with an absorbable collagen scaffold 

(54). This product is approved for: 

1) Spinal fusion surgeries: Assists vertebral 

fusion, especially in high-risk patients. 

2) Craniofacial   bone   defect   reconstruc 

-tion  reconstruction:  Such  as   in   large 

fractures or post-tumor resection repairs. 

3) Orthopedic surgeries: For treating long 

bone diaphyseal defects, nonunions, and 

complex fractures (55, 56). 

Clinical studies have shown that BMP-2 

combined with collagen scaffolds enhances 

the rate and quality of bone formation, 

reduces the need for autografts, and 

facilitates healing in challenging cases (6). 

Similarly, BMP-2 incorporated into β-TCP 

scaffolds has been successfully used in 

alveolar bone reconstruction, yielding 

improved healing outcomes (57). Moreover, 

animal and clinical studies have reported that 

BMP-7-loaded scaffolds are effective in 

 Scaffold Type 
 

Examples Advantages Disadvantages 

1  
Natural 

 
 

 
Collagen, Chitosan 

 
Biocompatible, 

bioactive 

Rapid degradation, low 
strength (42) 

2  
Synthetic 

 

 
PLGA, PCL 

 
Controlled 

degradation and 
structure 

 

Requires surface 
modification  (43, 44) 

3  
Inorganic 

 

 
HA, β-TCP 

 
Bioactive, bone-like 

Brittle, high release rate 
(45) 

4  
Composite 

 
PLGA/HA, GelMA/β-TCP, 

gelatin/HA/β-TCP, 
PCL/PLGA/β-TCP 

 
Combines benefits 

Complex manufacturing 
(46-48) 
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treating nonunion fractures (58). However, 

concerns such as ectopic bone formation, 

excessive inflammation, and potential 

carcinogenic risks at high doses have been 

reported (59). Key challenges in BMP-based 

scaffold applications include: 

1) Precise dosage control: High doses may 

cause ectopic bone or inflammation; low 

doses may be ineffective (60). 

2) BMP stability in moist and enzymatic body 

environments (61). 

3) Variable immune responses among 

patients (62). 

4) Lack of standardization in clinical testing 

(63). 

To address these challenges, emerging 

technologies such as smart scaffolds sensitive 

to pH and enzymes for the controlled release 

of BMP, the use of 3D bioprinting for precise 

design and spatial loading of BMP, the 

integration of BMP with exosomes (64-67) to 

enhance stability and efficacy, and "nano-

hybrid" scaffolds for synergistic combination 

of BMP with other factors such as VEGF are 

currently under investigation (26, 68, 69) 

 

Clinical Studies and Therapeutic 

Applications of BMPs in Bone 

Regeneration 

BMPs, particularly rhBMP-2 and rhBMP-7, 

have played a key role in clinical treatments 

related to bone regeneration in recent years, 

including complex fractures, nonunions, 

large bone defects, and spinal and 

maxillofacial surgeries (10). These biological 

factors promote the differentiation of 

mesenchymal stem cells into osteoblasts and 

enhance osteogenesis, offering an effective 

alternative to autologous bone grafting. FDA-

approved BMPs include the following: 

1) rhBMP-2: This factor is used in lumbar 

interbody fusion, repair of mandibular bone 

defects, sinus lift in dental surgery, and in 

combination with absorbable collagen sponge 

(ACS). 

2) rhBMP-7 (OP-1): This factor is used in the 

treatment of nonunion in long bones and 

complex orthopedic surgeries, often in 

combination with biological scaffolds or 

natural carriers (54, 70). 

Currently, these factors are used in spinal 
surgery, delayed fracture healing, 
maxillofacial reconstruction, and dental 
implants (71). In lumbar spinal fusion 
surgeries, BMPs have served as an 
alternative to autologous bone grafts and 
have shown favorable outcomes (72).  

In a systematic review and meta-analysis, the 

efficacy and safety of rhBMP-2 and autologous 

iliac crest bone graft (ICBG) in lumbar fusion 

were compared in 2,185 patients. The results 

showed that rhBMP-2 had a higher fusion 

success rate, a lower risk of reoperation, and a 

similar complication rate compared to ICBG. 

rhBMP-2 was recommended as an effective 

alternative to ICBG for lumbar fusion (73). In 

a study, existing research on the application of 

rhBMP-2 in spinal fusion surgery from 1965 to 

2022 was reviewed. The evidence shows that 

the fusion rate with rhBMP-2 is similar to or 

even higher than the results achieved with 

autologous bone grafts. However, there are 

concerns regarding the cost, optimal dosage, 

and potential complications associated with 

the use of rhBMP-2 in spinal surgery (72).In a 

review study, the effect of rhBMP-2 in 

maxillofacial surgeries was investigated. The 

study showed that rhBMP-2 has high potential 

in maxillofacial surgeries due to its 

osteoinductive properties. Studies have 

indicated that rhBMP-2 can reduce donor site 
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morbidity and increase bone height in sinus 

and ridge augmentation procedures. 

Additionally, in the treatment of medication-

related osteonecrosis of the jaw, rhBMP-2 has 

been used as an adjunct with promising 

results. Overall, rhBMP-2 is recognized as a 

promising graft material in maxillofacial 

surgery (74). 

 In a study, the safety and efficacy of local 

rhBMP-7 implantation in bovine-derived 

collagen paste for the treatment of resistant 

non-unions were evaluated in fifty-two 

patients. The results showed that 94% of 

patients achieved union, with a mean healing 

time of 5.6 months. This method was 

recognized as an effective adjunctive 

treatment, with only one case of synostosis 

reported as a complication (75). A study 

evaluated the treatment of nonunion of the 

femur using single-stage methods (with 

rhBMP-7 and RIA) and two-stage methods 

(Masquelet technique). A total of 88 patients 

were assessed, with 74% achieving bone 

consolidation on average within 9.3 months. 

Intramedullary reaming (83%) was more 

effective than osteosynthesis plates (60%), 

and smoking was associated with a reduced 

rate of consolidation. The Masquelet 

technique was effective for infections and 

large bone defects, and quality of life 

improved in both groups. Treatment with 

rhBMP-7 and RIA was recommended for 

small defects, while intramedullary nailing 

was advised for large defects (76). 

Despite the widespread application of BMPs 

in clinical settings, side effects such as ectopic 

bone formation, severe swelling, and immune 

responses are notable (10). To overcome these 

side effects and limitations, new research 

strategies are being explored, such as the use 

of nanoparticles or hydrogels for controlled 

BMP release, combining BMP with other 

factors like VEGF to enhance both 

osteogenesis and angiogenesis, and gene 

editing (Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR)) to 

improve endogenous BMP production by stem 

cells (77, 78). 

 

Challenges, Innovations, and Future 

Directions in the Application of 

BMPs in Bone Tissue Engineering 

While BMPs have been proposed as effective 

biological agents for bone regeneration, 

various challenges remain in optimizing their 

use (79). These challenges, ranging from 

safety concerns and side effects to economic 

barriers and the need for improved BMP 

production and release processes, can 

significantly impact the clinical application of 

these proteins (80). One common issue with 

the use of BMPs, especially at high doses, is 

ectopic bone formation (81). This problem 

arises from the non-targeted distribution of 

BMPs to surrounding areas during 

implantation (82). Bone formation in 

inappropriate locations such as soft tissues, 

nerves, or within the spinal cavity can lead to 

severe complications, including nerve 

compression and eventual nerve damage (83). 

The use of smart carriers that can precisely 

direct BMPs to the intended site and 

improvements in the design of biodegradable 

scaffolds to limit BMP release and prevent its 

spread to undesired areas can be effective 

solutions to address this issue (41). 

In many cases, high doses of rhBMPs are 

required to achieve effective bone formation. 

These high doses can lead to severe 

inflammation, swelling, and immune system 

reactions (6). In some patients, the immune 
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response to BMPs may lead to the production 

of anti-BMP antibodies, reducing the 

therapeutic effect (84). The use of controlled-

release systems that allow for more precise 

and gradual BMP delivery, along with reduced 

BMP doses through optimized scaffolds and 

carriers, could offer viable solutions to this 

problem (7). Another major challenge is the 

precise control of BMP release. Many current 

carriers, such as collagen sponges, are not 

capable of targeted and controlled BMP 

release (36). This issue results in diminished 

BMP effectiveness over time and increased 

side effects. Using nanoparticles or hydrogels 

that offer better control over drug release is a 

promising solution (85). Additionally, 

designing smart release systems that can 

respond to specific environmental conditions, 

such as pH or temperature, can lead to more 

effective BMP release (86, 87). 

The use of biodegradable nanoparticles, such 

as PLGA (poly-lactic-co-glycolic acid), and 

liposomes for the gradual release of BMPs at 

the target site offers a more accurate and 

effective means of delivering BMPs to the 

target tissue, preventing unintended release 

(6, 88). This approach is associated with 

reduced side effects and prolonged BMP 

release at specific locations (89). An exciting 

innovation is the use of engineered stem cells 

for local BMP production. These cells can 

produce BMPs within the patient's body and 

aid in bone regeneration (90). Gene editing 

techniques using CRISPR-Cas9 could also be 

employed to engineer stem cells to enhance 

BMP production. This in-situ production 

technology reduces the need for external 

release and increases therapeutic efficiency 

(91, 92). 

Nano-composite and micro-layered scaffolds 

that can stimulate cell differentiation into 

osteoblasts and precisely control BMP release 

are also an exciting advancement (1, 93, 94). 

These scaffolds, using biodegradable 

materials, allow the body to naturally build 

new bone structure (95). This technology 

controls BMP release and creates a favorable 

environment for bone growth (96). One of the 

most important areas of progress is 

combining BMPs with other growth factors 

such as VEGF or FGF (fibroblast growth 

factor). These combinations can 

simultaneously enhance processes like 

osteogenesis and angiogenesis (Table 2) (97). 

In recent decades, BMPs have become one of 

the most widely used tools in bone tissue 

engineering. These proteins are capable of 

stimulating bone production and repairing 

damaged tissues. Recent advances in 

production, scaffold design, and combination 

therapies have rapidly expanded the clinical 

and experimental applications of BMPs (98). 

 

Discussion 

BMPs have emerged as pivotal agents in the 

field of tissue engineering due to their potent 

osteoinductive capabilities. Their role 

transcends simple bone induction; they 

orchestrate complex signaling cascades that 

mediate stem cell differentiation, matrix 

synthesis, and angiogenesis, all of which are 

crucial for effective bone regeneration (99). 

The canonical Smad pathway remains the 

most studied route of BMP signaling, 

especially through BMP-2 and BMP-7, which 

have received FDA approval for clinical 

applications (100). These pathways not only 

induce osteoblast differentiation but also work 

in concert with non-canonical pathways such 

as MAPK and PI3K/Akt, creating a robust 

regulatory network (101). However, BMPs are  
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not without limitations. High doses are often 

required to achieve therapeutic efficacy, 

which can lead to adverse effects such as 

ectopic bone formation and inflammation 

(105). This has led to a growing interest in 

delivery strategies that can precisely control 

the spatial and temporal release of BMPs. 

Incorporating BMPs into smart biomimetic 

scaffolds, such as hydrogels or nanofiber 

composites, offers a promising solution by 

mimicking the native extracellular matrix and 

enhancing bioavailability (106, 107). 

Another critical challenge lies in the fine-

tuning of BMP signaling. Inhibitory molecules 

like Noggin, Gremlin, and Smad6 are essential 

for preventing aberrant ossification, but they 

can also hinder therapeutic outcomes if not 

carefully modulated (108, 109). Emerging 

technologies, including gene editing and 

controlled gene expression systems, provide 

new avenues for overcoming these challenges. 

Furthermore, combinatorial approaches 

involving BMPs and other growth factors such 

as VEGF or IGF may enhance vascularization 

and support complex tissue repair (109, 110). 

From a clinical standpoint, although BMP-

based therapies have achieved notable success 

in    spinal   fusion   and   long   bone   defects, 

translation to broader applications  requires 

addressing concerns over cost, reproducibility 

 

and safety (111). Continuous innovation in 

scaffold design, molecular biology, and 

regenerative medicine is therefore essential 

to maximize the therapeutic potential of 

BMPs in tissue engineering. 

 

Conclusion 

In summary, BMPs play an indispensable role 

in modern tissue engineering, particularly in 

bone regeneration. Their unique biological 

properties, ability to modulate multiple 

signaling pathways, and synergy with 

biomaterials position them at the forefront of 

regenerative strategies. However, to fully 

harness their potential, several obstacles—

including dose optimization, delivery 

precision, and inhibition management—must 

be addressed. Future research should 

prioritize interdisciplinary approaches 

combining molecular biology, materials 

science, and clinical translational studies. 

Innovations in smart biomaterials, gene 

regulation, and combinatorial growth factor 

therapies hold the key to overcoming current 

limitations and broadening the clinical 

application of BMP-based tissue engineering. 

By bridging fundamental biological 

mechanisms with advanced scaffold 

technologies, the next generation of BMP-

centered therapies can offer safe, effective, 

  
Combination 

 
Benefit 

1 BMP + VEGF 
 

Simultaneous enhancement of osteogenesis and angiogenesis (102) 

2 BMP + FGF-2 
 

Stimulation of osteoblast differentiation and stem cell proliferation (103) 

3 BMP + PDGF 
 

Simultaneous repair of soft and hard tissues (104) 

Table 2. Combination of BMPs with other growth factors to enhance bone formation and 

angiogenesis (BMP: Bone Morphogenetic Protein; VEGF: Vascular Endothelial Growth 

Factor; FGF-2: Fibroblast Growth Factor-2; PDGF: Platelet-Derived Growth Factor. 
Numbers in parentheses refer to references.) 
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and personalized solutions for complex tissue 

regeneration challenges. 
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